LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
cget51.f
Go to the documentation of this file.
1 *> \brief \b CGET51
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
12 * RWORK, RESULT )
13 *
14 * .. Scalar Arguments ..
15 * INTEGER ITYPE, LDA, LDB, LDU, LDV, N
16 * REAL RESULT
17 * ..
18 * .. Array Arguments ..
19 * REAL RWORK( * )
20 * COMPLEX A( LDA, * ), B( LDB, * ), U( LDU, * ),
21 * $ V( LDV, * ), WORK( * )
22 * ..
23 *
24 *
25 *> \par Purpose:
26 * =============
27 *>
28 *> \verbatim
29 *>
30 *> CGET51 generally checks a decomposition of the form
31 *>
32 *> A = U B V**H
33 *>
34 *> where **H means conjugate transpose and U and V are unitary.
35 *>
36 *> Specifically, if ITYPE=1
37 *>
38 *> RESULT = | A - U B V**H | / ( |A| n ulp )
39 *>
40 *> If ITYPE=2, then:
41 *>
42 *> RESULT = | A - B | / ( |A| n ulp )
43 *>
44 *> If ITYPE=3, then:
45 *>
46 *> RESULT = | I - U U**H | / ( n ulp )
47 *> \endverbatim
48 *
49 * Arguments:
50 * ==========
51 *
52 *> \param[in] ITYPE
53 *> \verbatim
54 *> ITYPE is INTEGER
55 *> Specifies the type of tests to be performed.
56 *> =1: RESULT = | A - U B V**H | / ( |A| n ulp )
57 *> =2: RESULT = | A - B | / ( |A| n ulp )
58 *> =3: RESULT = | I - U U**H | / ( n ulp )
59 *> \endverbatim
60 *>
61 *> \param[in] N
62 *> \verbatim
63 *> N is INTEGER
64 *> The size of the matrix. If it is zero, CGET51 does nothing.
65 *> It must be at least zero.
66 *> \endverbatim
67 *>
68 *> \param[in] A
69 *> \verbatim
70 *> A is COMPLEX array, dimension (LDA, N)
71 *> The original (unfactored) matrix.
72 *> \endverbatim
73 *>
74 *> \param[in] LDA
75 *> \verbatim
76 *> LDA is INTEGER
77 *> The leading dimension of A. It must be at least 1
78 *> and at least N.
79 *> \endverbatim
80 *>
81 *> \param[in] B
82 *> \verbatim
83 *> B is COMPLEX array, dimension (LDB, N)
84 *> The factored matrix.
85 *> \endverbatim
86 *>
87 *> \param[in] LDB
88 *> \verbatim
89 *> LDB is INTEGER
90 *> The leading dimension of B. It must be at least 1
91 *> and at least N.
92 *> \endverbatim
93 *>
94 *> \param[in] U
95 *> \verbatim
96 *> U is COMPLEX array, dimension (LDU, N)
97 *> The unitary matrix on the left-hand side in the
98 *> decomposition.
99 *> Not referenced if ITYPE=2
100 *> \endverbatim
101 *>
102 *> \param[in] LDU
103 *> \verbatim
104 *> LDU is INTEGER
105 *> The leading dimension of U. LDU must be at least N and
106 *> at least 1.
107 *> \endverbatim
108 *>
109 *> \param[in] V
110 *> \verbatim
111 *> V is COMPLEX array, dimension (LDV, N)
112 *> The unitary matrix on the left-hand side in the
113 *> decomposition.
114 *> Not referenced if ITYPE=2
115 *> \endverbatim
116 *>
117 *> \param[in] LDV
118 *> \verbatim
119 *> LDV is INTEGER
120 *> The leading dimension of V. LDV must be at least N and
121 *> at least 1.
122 *> \endverbatim
123 *>
124 *> \param[out] WORK
125 *> \verbatim
126 *> WORK is COMPLEX array, dimension (2*N**2)
127 *> \endverbatim
128 *>
129 *> \param[out] RWORK
130 *> \verbatim
131 *> RWORK is REAL array, dimension (N)
132 *> \endverbatim
133 *>
134 *> \param[out] RESULT
135 *> \verbatim
136 *> RESULT is REAL
137 *> The values computed by the test specified by ITYPE. The
138 *> value is currently limited to 1/ulp, to avoid overflow.
139 *> Errors are flagged by RESULT=10/ulp.
140 *> \endverbatim
141 *
142 * Authors:
143 * ========
144 *
145 *> \author Univ. of Tennessee
146 *> \author Univ. of California Berkeley
147 *> \author Univ. of Colorado Denver
148 *> \author NAG Ltd.
149 *
150 *> \date December 2016
151 *
152 *> \ingroup complex_eig
153 *
154 * =====================================================================
155  SUBROUTINE cget51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
156  $ RWORK, RESULT )
157 *
158 * -- LAPACK test routine (version 3.7.0) --
159 * -- LAPACK is a software package provided by Univ. of Tennessee, --
160 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161 * December 2016
162 *
163 * .. Scalar Arguments ..
164  INTEGER ITYPE, LDA, LDB, LDU, LDV, N
165  REAL RESULT
166 * ..
167 * .. Array Arguments ..
168  REAL RWORK( * )
169  COMPLEX A( LDA, * ), B( LDB, * ), U( LDU, * ),
170  $ v( ldv, * ), work( * )
171 * ..
172 *
173 * =====================================================================
174 *
175 * .. Parameters ..
176  REAL ZERO, ONE, TEN
177  parameter( zero = 0.0e+0, one = 1.0e+0, ten = 10.0e+0 )
178  COMPLEX CZERO, CONE
179  parameter( czero = ( 0.0e+0, 0.0e+0 ),
180  $ cone = ( 1.0e+0, 0.0e+0 ) )
181 * ..
182 * .. Local Scalars ..
183  INTEGER JCOL, JDIAG, JROW
184  REAL ANORM, ULP, UNFL, WNORM
185 * ..
186 * .. External Functions ..
187  REAL CLANGE, SLAMCH
188  EXTERNAL clange, slamch
189 * ..
190 * .. External Subroutines ..
191  EXTERNAL cgemm, clacpy
192 * ..
193 * .. Intrinsic Functions ..
194  INTRINSIC max, min, real
195 * ..
196 * .. Executable Statements ..
197 *
198  result = zero
199  IF( n.LE.0 )
200  $ RETURN
201 *
202 * Constants
203 *
204  unfl = slamch( 'Safe minimum' )
205  ulp = slamch( 'Epsilon' )*slamch( 'Base' )
206 *
207 * Some Error Checks
208 *
209  IF( itype.LT.1 .OR. itype.GT.3 ) THEN
210  result = ten / ulp
211  RETURN
212  END IF
213 *
214  IF( itype.LE.2 ) THEN
215 *
216 * Tests scaled by the norm(A)
217 *
218  anorm = max( clange( '1', n, n, a, lda, rwork ), unfl )
219 *
220  IF( itype.EQ.1 ) THEN
221 *
222 * ITYPE=1: Compute W = A - U B V**H
223 *
224  CALL clacpy( ' ', n, n, a, lda, work, n )
225  CALL cgemm( 'N', 'N', n, n, n, cone, u, ldu, b, ldb, czero,
226  $ work( n**2+1 ), n )
227 *
228  CALL cgemm( 'N', 'C', n, n, n, -cone, work( n**2+1 ), n, v,
229  $ ldv, cone, work, n )
230 *
231  ELSE
232 *
233 * ITYPE=2: Compute W = A - B
234 *
235  CALL clacpy( ' ', n, n, b, ldb, work, n )
236 *
237  DO 20 jcol = 1, n
238  DO 10 jrow = 1, n
239  work( jrow+n*( jcol-1 ) ) = work( jrow+n*( jcol-1 ) )
240  $ - a( jrow, jcol )
241  10 CONTINUE
242  20 CONTINUE
243  END IF
244 *
245 * Compute norm(W)/ ( ulp*norm(A) )
246 *
247  wnorm = clange( '1', n, n, work, n, rwork )
248 *
249  IF( anorm.GT.wnorm ) THEN
250  result = ( wnorm / anorm ) / ( n*ulp )
251  ELSE
252  IF( anorm.LT.one ) THEN
253  result = ( min( wnorm, n*anorm ) / anorm ) / ( n*ulp )
254  ELSE
255  result = min( wnorm / anorm, real( n ) ) / ( n*ulp )
256  END IF
257  END IF
258 *
259  ELSE
260 *
261 * Tests not scaled by norm(A)
262 *
263 * ITYPE=3: Compute U U**H - I
264 *
265  CALL cgemm( 'N', 'C', n, n, n, cone, u, ldu, u, ldu, czero,
266  $ work, n )
267 *
268  DO 30 jdiag = 1, n
269  work( ( n+1 )*( jdiag-1 )+1 ) = work( ( n+1 )*( jdiag-1 )+
270  $ 1 ) - cone
271  30 CONTINUE
272 *
273  result = min( clange( '1', n, n, work, n, rwork ),
274  $ real( n ) ) / ( n*ulp )
275  END IF
276 *
277  RETURN
278 *
279 * End of CGET51
280 *
281  END
cgemm
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
clacpy
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
cget51
subroutine cget51(ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK, RWORK, RESULT)
CGET51
Definition: cget51.f:157