LAPACK  3.9.0
LAPACK: Linear Algebra PACKage
zhetrs_aa.f
Go to the documentation of this file.
1 *> \brief \b ZHETRS_AA
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZHETRS_AA + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs_aa.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs_aa.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs_aa.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
22 * WORK, LWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER UPLO
26 * INTEGER N, NRHS, LDA, LDB, LWORK, INFO
27 * ..
28 * .. Array Arguments ..
29 * INTEGER IPIV( * )
30 * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
31 * ..
32 *
33 *
34 *
35 *> \par Purpose:
36 * =============
37 *>
38 *> \verbatim
39 *>
40 *> ZHETRS_AA solves a system of linear equations A*X = B with a complex
41 *> hermitian matrix A using the factorization A = U**H*T*U or
42 *> A = L*T*L**H computed by ZHETRF_AA.
43 *> \endverbatim
44 *
45 * Arguments:
46 * ==========
47 *
48 *> \param[in] UPLO
49 *> \verbatim
50 *> UPLO is CHARACTER*1
51 *> Specifies whether the details of the factorization are stored
52 *> as an upper or lower triangular matrix.
53 *> = 'U': Upper triangular, form is A = U**H*T*U;
54 *> = 'L': Lower triangular, form is A = L*T*L**H.
55 *> \endverbatim
56 *>
57 *> \param[in] N
58 *> \verbatim
59 *> N is INTEGER
60 *> The order of the matrix A. N >= 0.
61 *> \endverbatim
62 *>
63 *> \param[in] NRHS
64 *> \verbatim
65 *> NRHS is INTEGER
66 *> The number of right hand sides, i.e., the number of columns
67 *> of the matrix B. NRHS >= 0.
68 *> \endverbatim
69 *>
70 *> \param[in] A
71 *> \verbatim
72 *> A is COMPLEX*16 array, dimension (LDA,N)
73 *> Details of factors computed by ZHETRF_AA.
74 *> \endverbatim
75 *>
76 *> \param[in] LDA
77 *> \verbatim
78 *> LDA is INTEGER
79 *> The leading dimension of the array A. LDA >= max(1,N).
80 *> \endverbatim
81 *>
82 *> \param[in] IPIV
83 *> \verbatim
84 *> IPIV is INTEGER array, dimension (N)
85 *> Details of the interchanges as computed by ZHETRF_AA.
86 *> \endverbatim
87 *>
88 *> \param[in,out] B
89 *> \verbatim
90 *> B is COMPLEX*16 array, dimension (LDB,NRHS)
91 *> On entry, the right hand side matrix B.
92 *> On exit, the solution matrix X.
93 *> \endverbatim
94 *>
95 *> \param[in] LDB
96 *> \verbatim
97 *> LDB is INTEGER
98 *> The leading dimension of the array B. LDB >= max(1,N).
99 *> \endverbatim
100 *>
101 *> \param[out] WORK
102 *> \verbatim
103 *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
104 *> \endverbatim
105 *>
106 *> \param[in] LWORK
107 *> \verbatim
108 *> LWORK is INTEGER
109 *> The dimension of the array WORK. LWORK >= max(1,3*N-2).
110 *> \endverbatim
111 *>
112 *> \param[out] INFO
113 *> \verbatim
114 *> INFO is INTEGER
115 *> = 0: successful exit
116 *> < 0: if INFO = -i, the i-th argument had an illegal value
117 *> \endverbatim
118 *
119 * Authors:
120 * ========
121 *
122 *> \author Univ. of Tennessee
123 *> \author Univ. of California Berkeley
124 *> \author Univ. of Colorado Denver
125 *> \author NAG Ltd.
126 *
127 *> \date November 2017
128 *
129 *> \ingroup complex16HEcomputational
130 *
131 * =====================================================================
132  SUBROUTINE zhetrs_aa( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
133  $ WORK, LWORK, INFO )
134 *
135 * -- LAPACK computational routine (version 3.8.0) --
136 * -- LAPACK is a software package provided by Univ. of Tennessee, --
137 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
138 * November 2017
139 *
140  IMPLICIT NONE
141 *
142 * .. Scalar Arguments ..
143  CHARACTER UPLO
144  INTEGER N, NRHS, LDA, LDB, LWORK, INFO
145 * ..
146 * .. Array Arguments ..
147  INTEGER IPIV( * )
148  COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
149 * ..
150 *
151 * =====================================================================
152 *
153  COMPLEX*16 ONE
154  parameter( one = 1.0d+0 )
155 * ..
156 * .. Local Scalars ..
157  LOGICAL LQUERY, UPPER
158  INTEGER K, KP, LWKOPT
159 * ..
160 * .. External Functions ..
161  LOGICAL LSAME
162  EXTERNAL lsame
163 * ..
164 * .. External Subroutines ..
165  EXTERNAL zgtsv, zswap, ztrsm, zlacgv, zlacpy, xerbla
166 * ..
167 * .. Intrinsic Functions ..
168  INTRINSIC max
169 * ..
170 * .. Executable Statements ..
171 *
172  info = 0
173  upper = lsame( uplo, 'U' )
174  lquery = ( lwork.EQ.-1 )
175  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
176  info = -1
177  ELSE IF( n.LT.0 ) THEN
178  info = -2
179  ELSE IF( nrhs.LT.0 ) THEN
180  info = -3
181  ELSE IF( lda.LT.max( 1, n ) ) THEN
182  info = -5
183  ELSE IF( ldb.LT.max( 1, n ) ) THEN
184  info = -8
185  ELSE IF( lwork.LT.max( 1, 3*n-2 ) .AND. .NOT.lquery ) THEN
186  info = -10
187  END IF
188  IF( info.NE.0 ) THEN
189  CALL xerbla( 'ZHETRS_AA', -info )
190  RETURN
191  ELSE IF( lquery ) THEN
192  lwkopt = (3*n-2)
193  work( 1 ) = lwkopt
194  RETURN
195  END IF
196 *
197 * Quick return if possible
198 *
199  IF( n.EQ.0 .OR. nrhs.EQ.0 )
200  $ RETURN
201 *
202  IF( upper ) THEN
203 *
204 * Solve A*X = B, where A = U**H*T*U.
205 *
206 * 1) Forward substitution with U**H
207 *
208  IF( n.GT.1 ) THEN
209 *
210 * Pivot, P**T * B -> B
211 *
212  DO k = 1, n
213  kp = ipiv( k )
214  IF( kp.NE.k )
215  $ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
216  END DO
217 *
218 * Compute U**H \ B -> B [ (U**H \P**T * B) ]
219 *
220  CALL ztrsm( 'L', 'U', 'C', 'U', n-1, nrhs, one, a( 1, 2 ),
221  $ lda, b( 2, 1 ), ldb )
222  END IF
223 *
224 * 2) Solve with triangular matrix T
225 *
226 * Compute T \ B -> B [ T \ (U**H \P**T * B) ]
227 *
228  CALL zlacpy( 'F', 1, n, a(1, 1), lda+1, work(n), 1 )
229  IF( n.GT.1 ) THEN
230  CALL zlacpy( 'F', 1, n-1, a( 1, 2 ), lda+1, work( 2*n ), 1)
231  CALL zlacpy( 'F', 1, n-1, a( 1, 2 ), lda+1, work( 1 ), 1 )
232  CALL zlacgv( n-1, work( 1 ), 1 )
233  END IF
234  CALL zgtsv( n, nrhs, work(1), work(n), work(2*n), b, ldb,
235  $ info )
236 *
237 * 3) Backward substitution with U
238 *
239  IF( n.GT.1 ) THEN
240 *
241 * Compute U \ B -> B [ U \ (T \ (U**H \P**T * B) ) ]
242 *
243  CALL ztrsm( 'L', 'U', 'N', 'U', n-1, nrhs, one, a( 1, 2 ),
244  $ lda, b(2, 1), ldb)
245 *
246 * Pivot, P * B [ P * (U**H \ (T \ (U \P**T * B) )) ]
247 *
248  DO k = n, 1, -1
249  kp = ipiv( k )
250  IF( kp.NE.k )
251  $ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
252  END DO
253  END IF
254 *
255  ELSE
256 *
257 * Solve A*X = B, where A = L*T*L**H.
258 *
259 * 1) Forward substitution with L
260 *
261  IF( n.GT.1 ) THEN
262 *
263 * Pivot, P**T * B -> B
264 *
265  DO k = 1, n
266  kp = ipiv( k )
267  IF( kp.NE.k )
268  $ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
269  END DO
270 *
271 * Compute L \ B -> B [ (L \P**T * B) ]
272 *
273  CALL ztrsm( 'L', 'L', 'N', 'U', n-1, nrhs, one, a( 2, 1 ),
274  $ lda, b(2, 1), ldb)
275  END IF
276 *
277 * 2) Solve with triangular matrix T
278 *
279 * Compute T \ B -> B [ T \ (L \P**T * B) ]
280 *
281  CALL zlacpy( 'F', 1, n, a(1, 1), lda+1, work(n), 1)
282  IF( n.GT.1 ) THEN
283  CALL zlacpy( 'F', 1, n-1, a( 2, 1 ), lda+1, work( 1 ), 1)
284  CALL zlacpy( 'F', 1, n-1, a( 2, 1 ), lda+1, work( 2*n ), 1)
285  CALL zlacgv( n-1, work( 2*n ), 1 )
286  END IF
287  CALL zgtsv(n, nrhs, work(1), work(n), work(2*n), b, ldb,
288  $ info)
289 *
290 * 3) Backward substitution with L**H
291 *
292  IF( n.GT.1 ) THEN
293 *
294 * Compute L**H \ B -> B [ L**H \ (T \ (L \P**T * B) ) ]
295 *
296  CALL ztrsm( 'L', 'L', 'C', 'U', n-1, nrhs, one, a( 2, 1 ),
297  $ lda, b( 2, 1 ), ldb)
298 *
299 * Pivot, P * B [ P * (L**H \ (T \ (L \P**T * B) )) ]
300 *
301  DO k = n, 1, -1
302  kp = ipiv( k )
303  IF( kp.NE.k )
304  $ CALL zswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
305  END DO
306  END IF
307 *
308  END IF
309 *
310  RETURN
311 *
312 * End of ZHETRS_AA
313 *
314  END
zlacgv
subroutine zlacgv(N, X, INCX)
ZLACGV conjugates a complex vector.
Definition: zlacgv.f:76
ztrsm
subroutine ztrsm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
ZTRSM
Definition: ztrsm.f:182
zgtsv
subroutine zgtsv(N, NRHS, DL, D, DU, B, LDB, INFO)
ZGTSV computes the solution to system of linear equations A * X = B for GT matrices
Definition: zgtsv.f:126
zlacpy
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:105
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
zswap
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:83
zhetrs_aa
subroutine zhetrs_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
ZHETRS_AA
Definition: zhetrs_aa.f:134