LAPACK
3.9.0
LAPACK: Linear Algebra PACKage
zptsv.f
Go to the documentation of this file.
1
*> \brief <b> ZPTSV computes the solution to system of linear equations A * X = B for PT matrices</b>
2
*
3
* =========== DOCUMENTATION ===========
4
*
5
* Online html documentation available at
6
* http://www.netlib.org/lapack/explore-html/
7
*
8
*> \htmlonly
9
*> Download ZPTSV + dependencies
10
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptsv.f">
11
*> [TGZ]</a>
12
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptsv.f">
13
*> [ZIP]</a>
14
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptsv.f">
15
*> [TXT]</a>
16
*> \endhtmlonly
17
*
18
* Definition:
19
* ===========
20
*
21
* SUBROUTINE ZPTSV( N, NRHS, D, E, B, LDB, INFO )
22
*
23
* .. Scalar Arguments ..
24
* INTEGER INFO, LDB, N, NRHS
25
* ..
26
* .. Array Arguments ..
27
* DOUBLE PRECISION D( * )
28
* COMPLEX*16 B( LDB, * ), E( * )
29
* ..
30
*
31
*
32
*> \par Purpose:
33
* =============
34
*>
35
*> \verbatim
36
*>
37
*> ZPTSV computes the solution to a complex system of linear equations
38
*> A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal
39
*> matrix, and X and B are N-by-NRHS matrices.
40
*>
41
*> A is factored as A = L*D*L**H, and the factored form of A is then
42
*> used to solve the system of equations.
43
*> \endverbatim
44
*
45
* Arguments:
46
* ==========
47
*
48
*> \param[in] N
49
*> \verbatim
50
*> N is INTEGER
51
*> The order of the matrix A. N >= 0.
52
*> \endverbatim
53
*>
54
*> \param[in] NRHS
55
*> \verbatim
56
*> NRHS is INTEGER
57
*> The number of right hand sides, i.e., the number of columns
58
*> of the matrix B. NRHS >= 0.
59
*> \endverbatim
60
*>
61
*> \param[in,out] D
62
*> \verbatim
63
*> D is DOUBLE PRECISION array, dimension (N)
64
*> On entry, the n diagonal elements of the tridiagonal matrix
65
*> A. On exit, the n diagonal elements of the diagonal matrix
66
*> D from the factorization A = L*D*L**H.
67
*> \endverbatim
68
*>
69
*> \param[in,out] E
70
*> \verbatim
71
*> E is COMPLEX*16 array, dimension (N-1)
72
*> On entry, the (n-1) subdiagonal elements of the tridiagonal
73
*> matrix A. On exit, the (n-1) subdiagonal elements of the
74
*> unit bidiagonal factor L from the L*D*L**H factorization of
75
*> A. E can also be regarded as the superdiagonal of the unit
76
*> bidiagonal factor U from the U**H*D*U factorization of A.
77
*> \endverbatim
78
*>
79
*> \param[in,out] B
80
*> \verbatim
81
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
82
*> On entry, the N-by-NRHS right hand side matrix B.
83
*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
84
*> \endverbatim
85
*>
86
*> \param[in] LDB
87
*> \verbatim
88
*> LDB is INTEGER
89
*> The leading dimension of the array B. LDB >= max(1,N).
90
*> \endverbatim
91
*>
92
*> \param[out] INFO
93
*> \verbatim
94
*> INFO is INTEGER
95
*> = 0: successful exit
96
*> < 0: if INFO = -i, the i-th argument had an illegal value
97
*> > 0: if INFO = i, the leading minor of order i is not
98
*> positive definite, and the solution has not been
99
*> computed. The factorization has not been completed
100
*> unless i = N.
101
*> \endverbatim
102
*
103
* Authors:
104
* ========
105
*
106
*> \author Univ. of Tennessee
107
*> \author Univ. of California Berkeley
108
*> \author Univ. of Colorado Denver
109
*> \author NAG Ltd.
110
*
111
*> \date December 2016
112
*
113
*> \ingroup complex16PTsolve
114
*
115
* =====================================================================
116
SUBROUTINE
zptsv
( N, NRHS, D, E, B, LDB, INFO )
117
*
118
* -- LAPACK driver routine (version 3.7.0) --
119
* -- LAPACK is a software package provided by Univ. of Tennessee, --
120
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
121
* December 2016
122
*
123
* .. Scalar Arguments ..
124
INTEGER
INFO, LDB, N, NRHS
125
* ..
126
* .. Array Arguments ..
127
DOUBLE PRECISION
D( * )
128
COMPLEX*16
B( LDB, * ), E( * )
129
* ..
130
*
131
* =====================================================================
132
*
133
* .. External Subroutines ..
134
EXTERNAL
xerbla
,
zpttrf
,
zpttrs
135
* ..
136
* .. Intrinsic Functions ..
137
INTRINSIC
max
138
* ..
139
* .. Executable Statements ..
140
*
141
* Test the input parameters.
142
*
143
info = 0
144
IF
( n.LT.0 )
THEN
145
info = -1
146
ELSE
IF
( nrhs.LT.0 )
THEN
147
info = -2
148
ELSE
IF
( ldb.LT.max( 1, n ) )
THEN
149
info = -6
150
END IF
151
IF
( info.NE.0 )
THEN
152
CALL
xerbla
(
'ZPTSV '
, -info )
153
RETURN
154
END IF
155
*
156
* Compute the L*D*L**H (or U**H*D*U) factorization of A.
157
*
158
CALL
zpttrf
( n, d, e, info )
159
IF
( info.EQ.0 )
THEN
160
*
161
* Solve the system A*X = B, overwriting B with X.
162
*
163
CALL
zpttrs
(
'Lower'
, n, nrhs, d, e, b, ldb, info )
164
END IF
165
RETURN
166
*
167
* End of ZPTSV
168
*
169
END
zpttrf
subroutine zpttrf(N, D, E, INFO)
ZPTTRF
Definition:
zpttrf.f:94
zpttrs
subroutine zpttrs(UPLO, N, NRHS, D, E, B, LDB, INFO)
ZPTTRS
Definition:
zpttrs.f:123
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition:
xerbla.f:62
zptsv
subroutine zptsv(N, NRHS, D, E, B, LDB, INFO)
ZPTSV computes the solution to system of linear equations A * X = B for PT matrices
Definition:
zptsv.f:117
SRC
zptsv.f
Generated on Wed May 5 2021 15:10:44 for LAPACK by
1.8.16